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Abstract Montastraea faveolata is a reef-building Caribbean
coral that is currently listed as endangered across its range. A
better understanding of the population genetic structure, ge-
netic diversity and connectivity is needed to make sound
conservation plans for this species. Here, we describe nine
novel polymorphic microsatellite loci mined from currently
available sequence data. Loci were screened in two widely
separated populations (n021 individuals per population) from
the Flower Garden Banks (northern Gulf of Mexico) and
Curaçao (Netherland Antilles, southern Caribbean). Allelic
diversity ranged from 3 to 16 and observed heterozygosities
ranged from 0.095 to 0.905. For all loci but one, the Hardy–
Weinberg equilibrium hypothesis was not rejected within each
population. These loci failed to amplify symbiont DNA iso-
lated from pure Symbiodinium cultures, confirming their
coral-specific origin. We also describe a multiplexing protocol
for these markers reducing the costs and time required for
future genetic studies. Finally, all markers were tested in the
two sister species,M. franksi andM. annularis, and successful

amplification and polymorphism were confirmed. The marker
panel reported here, in combination with previously published
markers for the same species complex, will facilitate coral reef
connectivity research for this ecologically important genus,
Montastraea, across the Caribbean.

Keywords Montastraea annularis species complex .

Scleractinia . Coral reef . Multiplex . Simple sequence
repeats . SSR . Conservation . Connectivity

Introduction

Coral reefs are the most biologically diverse marine ecosys-
tems; however, they are at risk due to global climate change
and other anthropogenic stressors (Hoegh-Guldberg et al.
2007). Coral population declines are particularly pronounced
in the Caribbean, and the persistence of many species is
becoming increasingly uncertain (Gardner et al. 2003;
Mumby et al. 2007). Understanding genetic structure and gene
flow among coral populations is essential to optimize the scale
of conservation efforts and identify the reefs that serve as
propagule sources or stepping-stones, and therefore are of
the highest conservation priority (Cowen et al. 2006).
Studying coral dispersal and gene flow is challenging, since
the dispersive stage of a coral is microscopic and planktonic
and therefore cannot be directly tracked (Jones et al. 2009).
Consequently, patterns of coral connectivity for most coral
species remain poorly understood, despite the importance of
connectivity in shaping ecological processes and informing
conservation decisions (Cowen et al. 2006). Even in the light
of recent advances in next-generation sequencing techniques,
microsatellites are still some of the most practical tools for
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studying connectivity in marine populations on both evolu-
tionary and ecological timescales (Ellegren 2004).

Caribbean corals in the genus Montastraea are slow grow-
ing (Gladfelter et al. 1978) and their decline across the
Caribbean (Edmunds and Elahi 2007) is therefore particularly
alarming, prompting these species to be red-listed as endan-
gered (IUCN 2011). Montastraea-dominated reefs have con-
sistently been associated with high species richness and species
abundances, and are therefore considered the greatest contrib-
utor to Caribbean reef ecosystem function (Mumby et al.
2008). Montastraea reef health also has high socioeconomic
value since it greatly affects fishing and tourism (Edwards et al.
2010). Previous research has examined Montastraea popula-
tion structure in the Caribbean (e.g., Baums et al. 2010;
Goodbody-Gringley et al. 2012; Foster et al. 2012); however,
these studies have only used a limited number of microsatellite
loci (seven, Severance et al. 2004). Due to inconsistent allele
scoring, only 4–6 of these initially described loci have been
adopted for subsequent use (Severance andKarl 2006; Foster et
al. 2007, 2012; Baums et al. 2010; Levitan et al. 2011).

Population genetic studies of Caribbean Montastraea
species would greatly benefit from additional microsatellite
markers (Levitan et al. 2011). The aim of this study was to
increase the informative loci available to better elucidate the
genetic structure of Montastraea faveolata and demonstrate
transferability to other closely related Montastraea species.
Here, we describe nine novel microsatellites examined in 21
M. faveolata individuals from the Flower Garden Banks
(FGB), of which all were polymorphic. We also describe a
robust multiplexing protocol (eight loci) that reduces the
costs and time spent genotyping, and this protocol was also
verified in 21 individuals from Curaçao. This panel of nine
loci will be a useful tool for population genetics, clone
detection, and parentage analysis in M. faveolata and for
the entire species complex.

Materials and methods

Isolation and characterization of microsatellite loci

Microsatellites were mined from publicly available M. faveo-
lata EST data (n033,206 sequences) in the SymBioSys
database (http://sequoia.ucmerced.edu/SymBioSys/). ESTs
were compared against NCBI’s core UniVec database
(ftp.ncbi.nih.gov/pub/UniVec/) using VecScreen (NCBI
toolkit), and trimmed to exclude regions matching vector
sequences (score ≥100). Next, trimmed ESTs were scanned
for candidate microsatellite targets using RepeatMasker
(www.repeatmasker.org). We first identified sequences bear-
ing repeats ≥50 bp in length, with ≤20 % deviation from
perfect repeat structure (n0544). Sequences lacking non-
repetitive flanking regions for primer design were excluded,

leaving n0309. To identify unique microsatellite loci, repeti-
tive sequences were assembled with CAP3 (Huang and
Madan 1999), identifying n0173 candidates. To further
screen for redundancy, candidates were grouped by repeat
type (e.g., ATG), and each group screened using BLASTN
(bit-score ≥40), identifying 59 non-redundant loci. Flanking
primers were designed for 53 of these using Primer3 (pri-
mer3.sourceforge.net) with GC content between 45 and
55 % and amplicon length between 100 and 500 bp. Twelve
were tested in this study, nine of which are presented here.
Two were found to be monomorphic in the FGB population
and one primer set appeared to amplify a duplicated region
(more than two alleles observed for all individuals tested).

Sample collection and DNA extraction

In August 2011, tissue samples were collected from 21 M.
faveolata colonies from the East Flower Garden Banks, Gulf
of Mexico. Colonies were at least 10 m apart to avoid
sampling the same clonal individual. Tissue was stored in
96 % ethanol and DNA was later extracted by immersing
tissue in digest buffer (100 mM NaCl, 10 mM Tris-Cl pH
8.0, 25 mM EDTA pH 8.0, 0.5 % SDS, 0.1 mgml−1

Proteinase K, and 1 μgml−1 RNaseA) for 1 h at 42 °C
followed by a standard phenol–chloroform extraction pro-
tocol (Chomczynski and Sacchi 2006).

In September 2011, coral cores from 21 M. faveolata
colonies spaced at least 5 m apart were collected from
Curaçao. Coral cores were flash-frozen in a dry shipper
and DNA was isolated using a modified MoBio Power
Plant Bead protocol. (PowerPlant DNA Isolation Kit
Cat#13200-100; MO BIO Laboratories, Carlsbad, CA).
Approximately 50 mg of coral powder was homogenized
with Power Plant Bead Solution and 10 U/μL of Ready-
Lyse Lysozyme, and these samples were incubated for
10 min at room temperature on a rotator. Following the
addition of 20 mg/mL of Proteinase K, samples were incu-
bated for an additional 60–90 min at 65 °C. Two-sized
zirconia/silica beads (400 mg each of 0.1 mm and 0.5 mm)
were added and homogenized for 30 s using a Mini-
BeadBeater-16 (BioSpec Product Cat#607) and purified as
in the MoBio Power Plant Bead Protocol.

PCR amplification

Each 10 μl of polymerase chain reaction (PCR) mixture
contained 10 ng of DNA template, 0.1 μM fluorescently-
labeled forward primer, 0.1 μM reverse primer, 0.2 mM
dNTP, 1 μl 10X ExTaq buffer, 0.025 U ExTaq Polymerase
(Takara Biotechnology) and 0.0125 U Pfu Polymerase
(Agilent Technologies). Amplification was performed using
a DNA Engine Tetrad2 Thermal Cycler (Bio-Rad, Hercules,
CA, USA). Cycling began at 94 °C for 5 min, followed by
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35 cycles of 94 °C for 40 s, 60 °C for 60 s, and 72 °C for
60 s and then a 10 min extension period at 72 °C. Amplicons
were resolved on agarose gels to verify amplification and
molecular weights were analyzed using the ABI 3130XL
capillary sequencer with a ROX-labeled size standard. To
confirm coral-specific origin of loci, all primer pairs were
tested on two strains of Symbiodinium (B184 and D206)
found in Montastraea species, with the Symbiodinium-spe-
cific internal transcribed spacer (ITS1) of the ribosomal
RNA gene as a positive control, and no amplification was
observed except in the ITS1 control.

Data analysis

Genotypes were called using GeneMarker 1.70 (SoftGenetics).
Observed (Ho) and expected (He) heterozygosities, number of
alleles (Na), probability of identity for each locus (PID), and
Hardy–Weinberg equilibrium (HWE) were calculated in
GenAlEx version 6.4 (Peakall and Smouse 2006). GENEPOP
v.1.2 (Raymond and Rousset 1995) was used to test for linkage
disequilibrium (LD) between loci using 1,000 dememoriza-
tions with 100 batches (1,000 iterations per batch).
Microchecker (Van Oosterhout et al. 2004) was used to detect
null alleles within the sampling populations and allele scoring
error rates were estimated by re-genotyping 10 individuals and
calculating the proportion of variant calls divided by the total
consensus alleles (Selkoe and Toonen 2006). Loci were
checked for cross-amplification in samples of M. franksi
(n05) and M. annularis (n05) also collected from the
FGB.

Optimizing multiplex PCR

Microsatellite multiplexing was benchmarked by testing
several loci in a multiplex PCR reaction and comparing
the genotyping results with individual reactions. Overlap

between amplicon sizes was minimized irrespective of the
tag color to avoid interference of fluorescence in other
channels. Only loci with amplicons at least 40 bp apart were
assigned the same fluorescent tag to avoid allele call confu-
sion. Ten nanograms of template were used in each 20-μl
multiplex PCR reaction containing 0.1 μM fluorescently-
labeled forward primer and 0.1 μM reverse primer for each
locus in the group. All other components of the mixture
were identical to the single reactions described above. To
achieve representation of all loci, PCR cycling was modified
by increasing the annealing time. PCR conditions began at
94 °C for 5 min, followed by 35 cycles of 94 °C for 40 s,
60 °C for 2 min, and 72 °C for 60 s and then a 10-min
extension period at 72 °C. One previously described SSR
locus was included in the multiplex protocol (FAM-labeled
maMS8; Severance et al. 2004) for family A. One locus
(Mfav_29) described in the present study was not included
in the final multiplex groups as it deviated significantly from
the Hardy–Weinberg equilibrium (HWE, Table I).

Results and discussion

Connectivity studies of Caribbean Montastraea that have
inferred genetic structure from available microsatellite loci
(Severence et al. 2004) have found little to no genetic
structure throughout the Caribbean basin. Severence and
Karl (2006) found M. faveolata populations to be well
mixed across large geographical expanses (Puerto Rico,
Mexico, Florida), and Baums et al. (2010) also demonstrat-
ed no genetic subdivision along the Florida reef tract and
between Florida and Mexico for M. faveolata. To date, the
most extensive analysis of Montastraea genetic structure
across the Caribbean (M. annularis from 26 sites) has also
demonstrated high levels of admixture throughout the basin
with some evidence of structure between the East and West

Table 2 Summary of eight polymorphic Montastraea faveolata SSR markers and their multiplexing groups for 21 individuals from Curaçao

Locus (Repeat) Observed (bp) n na Ho He PID HWE

M_fav3A (ATG)25 145–218 21 6 0.238 0.261 5.5E-01 0.001*

M_fav4B (TTTG)17 375–407 21 8 0.524 0.819 5.5E-02 0.154

M_fav5A (CGA)17 337–397 21 15 0.762 0.871 2.8E-02 0.026

M_fav6B (CA)33 489–425 21 5 0.333 0.658 1.7E-01 0.007

M_fav7A (CAT)24 429–498 21 14 0.905 0.856 3.5E-01 1.000

M_fav8C (CAA)38 299–341 21 13 0.762 0.900 1.8E-02 0.006

M_fav9B (CAAT)21 260–300 21 9 0.762 0.771 6.0E-02 0.257

M_fav30C (TTTTG)8 238–248 21 3 0.095 0.094 8.3E-01 0.997

n number of individuals, na number of alleles, Ho observed heterozygosity

He expected heterozygosity, HWE Hardy-Weinberg Equilibrium P-values PID is the probability of identity for each locus

A, B, C Multiplex primer groups A, B and C

*Deviates significantly from Hardy–Weinberg Equilibrium (HWE) after Bonferroni correction (α00.006)
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Caribbean basin (Foster et al. 2012). Overall, these studies
have found little population differentiation between Caribbean
locations; however, the small number of informative loci
(n ≤7) may have constrained the ability to detect genetic
structure between regions.

Of the nine novel polymorphic microsatellite loci for
Montastraea faveolata, five are trinucleotide repeats, one
dinucleotide, two tetranucleotide and one pentanuclotide. A
total of 91 alleles (4–16 alleles per locus) were detected
across these loci in the 21 colonies sampled from the FGB
(Table 1). Observed (Ho) and expected (He) heterozygosities
ranged from 0.286–0.905 and 0.300–0.887, respectively.
One locus (M_fav29) deviated from HWE after Bonferroni
correction (p00.0055), while three loci (M_fav4, M_fav8,
and M_fav30) showed large, but non-significant, differences
between Ho and He. Probability of identities (PID) were low
(≤1.1E−01) for all loci and significant LD was detected for
one pair of loci: M_fav7 and M_fav8 (p<0.0001). Evidence
for null alleles was present for three loci (Mfav_4, Mfav_5,
and Mfav8), however error rates in allele calling were also
low (<5 %) for all loci tested.

To ensure that these loci were useful markers across the
species range, an additional 21 M. faveolata colonies from
Curaçao were genotyped using the multiplexing protocol
described above (eight loci). A total of 73 alleles (3–15
alleles per locus) were detected and all loci were found to
be polymorphic for this population (Table 2). Observed (Ho)
and expected (He) heterozygosities ranged from 0.095to 0.905
and 0.094 to 0.900, respectively. One locus (M_fav3) deviated
from HWE after Bonferroni correction (p00.006) and two
loci (M_fav6 and M_fav8) demonstrated marginal signifi-
cance. Overall, these data suggest that the loci described here
will likely be useful for genetic studies across the range of
Montastraea faveolata.

In the cross-species amplification analysis with M.
franksi and M. annularis from the FGB, all but two loci
(M_fav8 and M_fav29) were amplified in all specimens (n0
5) with ≥80 % success, indicating effective transferability to
the Montastraea complex (Table 1). These cross-amplified
loci were also capillary-sequenced and found to be poly-
morphic in both species.

Conclusion

The nine novel microsatellite markers described here more
than doubles the number of markers available for the eco-
logically important Montastraea species complex in the
Caribbean. Over the past three decades, populations of
Montastraea corals have been decreasing rapidly across
their entire Caribbean range (Gardner et al. 2003; Mumby
et al. 2007). The availability of additional markers along
with the streamlined multiplexing protocol will aid future

conservation genetics research by improving the power of
detecting genetic structure, recent migrants, parentage anal-
ysis, and clone identification of not only M. faveolata but
also the Montastraea species complex throughout their en-
tire distribution range.
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