Recent progress in *Symbiodinium* transcriptomics

William Leggat a,b,⁎, David Yellowlees a, Monica Medina c

a ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
b School of Pharmacy and Molecular Sciences, James Cook University, Townsville, Queensland, 4811, Australia
c School of Natural Sciences, University of California Merced, 5200 N. Lake Rd., Merced, CA 95343, USA

**Abstract**

Dinoflagellate symbionts of the genus *Symbiodinium* are integral to the success of the coral holobiont (a coral host and the microbial community it harbours), however despite their importance we currently have a very limited knowledge of the genes which they possess and their genomic organisation. Analysis shows that the number of expressed sequence tags (genes that are expressed) available for *Symbiodinium* (7964) is less than 1/10 of those available for the scleractinian coral host (103,434). This lack of DNA sequence information limits the functional genomic studies that can be undertaken from the symbiont perspective. In addition these sequences are from only three *Symbiodinium* types (C3, A1, A3) and do not represent the large diversity of clades and subclades seen. Here we summarise our current understanding of the *Symbiodinium* genomic content with reference to our knowledge of other dinoflagellates. The genetic information of *Symbiodinium* is encompassed in the nuclear, plastid and mitochondrial genomes. As is the case with other dinoflagellates these three genomes are significantly different from the “general” phototrophic eukaryote. Firstly the nuclear genome of dinoflagellates is extremely large, utilises modified DNA bases not normally found in eukaryotes, and tandem repeat regions seem to contain the most highly expressed genes. Meanwhile the plastid genome, which normally contains between 40 and 250 genes in other eukaryotes, has been reduced to 18 genes encoded in “minicircles.” Finally the dinoflagellate mitochondrial genome only encodes for 2 or 3 proteins instead of the normal 40–50 in other eukaryotes. While we have some knowledge of *Symbiodinium* genome structure, little is known about its transcriptome. With the advent of inexpensive high throughput sequencing technologies, our understanding of the *Symbiodinium* genome will rapidly increase and we will begin to be able to look into the responses of these important single celled organisms.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Recently the concept of the tripartite coral holobiont (Rohwer et al., 2001), consisting of the coral host, dinoflagellate symbiont and associated prokaryotes, has come to dominate how we view corals (this idea can be further expanded to include viruses (Vega-Thurber and Correa, 2010)). In any successful symbioses there must be a degree of integration and co-ordination of gene expression and metabolism in the different partners (Yellowlees et al., 2008). In the coral holobiont this integration is complicated by the fact that two of the partners (coral and dinoflagellate) are eukaryotic, in contrast to other partnerships such as the legume-Rhizobium or the squid-Vibrio symbioses, which involve eukaryote/prokaryote associations. An additional unusual aspect of the coral holobiont is that the genome size of the symbiont is larger than that of the host. As with any other photoautotroph, the *Symbiodinium* genetic makeup consists of three distinct genomes, the nuclear genome, the mitochondrial and the plastid genome, all of these have unique characteristics in *Symbiodinium* and more generally in dinoflagellates. In addition to this dinoflagellates have a variety of characteristics that make them unique amongst eukaryotic photoautotrophs, for example unique pigments and proteins associated with photosynthesis. This review will summarise our current state of knowledge of the *Symbiodinium* genomes, compare and contrast this information with our understanding of other dinoflagellates, and discuss how this knowledge can be used for functional genomics, which allows us to link gene expression changes to cellular, physiological and eventually ecological responses.

Dinoflagellates are the second largest group of eukaryotic photoautotrophs, yet despite this there has only been a slow accumulation of genomic information of this diverse group (Fig. 1). As with all genetic characterisation before the arrival of high-throughput sequencing, our early understanding of the *Symbiodinium* genome arose from studies on single genes or a few gene families. The first molecular work, focused on phylogenetic analysis of the small subunit ribosomal DNA gene revealed a great cryptic diversity in the genus (Rowan and Powers, 1992). Currently *Symbiodinium* are classified into nine separate clades (A–I) based solely...
Fig. 1. Accumulation of DNA sequences deposited into the National Center for Biotechnology Information (NCBI; http://www.ncbi.nlm.nih.gov) for the (A.) nucleotide database and (B.) the Expressed Sequence Tag database. Data represents the number of sequences deposited for the Classes Anthozoa (—) and Dinophyceae (-----) and the Orders Scleractinia (••••) and Suessiales (―) which respectively include corals and Symbiodinium.

upon genotypic markers (Pochon and Gates, 2010). The genotype diversity within the genus Symbiodinium is comparable to that seen amongst different orders of non-symbiotic dinoflagellates (Rowan and Powers, 1992). Each Symbiodinium clade contains numerous sub-clades (phylogenotypes) which are often differentiated by only a single base pair. Additional early characterisation of other genes, such as peridinin–chlorophyll a/c binding protein (PCP) (Norris and Miller, 1994), Rubisco (Morse et al., 1995; Rowan et al., 1996; Whitney et al., 1995; Whitney and Yellowlees, 1995) and a unique dinoflagellate light harvesting protein, integral chlorophyll a-chlorophyll c2–peridinin protein complex (acPCP, Hiller et al. (1995)), demonstrated that there was a large amount of novelty in the dinoflagellate genome when compared to other photoautotrophs. Recently, a number of expressed sequence tag projects (Bachvaroff et al., 2004; Hackett et al., 2004; Hackett et al., 2005; Leggat et al., 2007; Patron et al., 2005; Patron et al., 2006; Tanikawa et al., 2004; Yoon et al., 2005) have dramatically increased our knowledge of the dinoflagellate transcriptome; with over 50,000 EST sequences now available, these studies have demonstrated that dinoflagellates have a unique genetic makeup.

1.1. Genomic organisation of dinoflagellates

Despite the ecological importance of dinoflagellates, until recently, we knew little about their genetic compliment, and what was known indicated that they were extremely different to other algae. Estimates of the genome size of dinoflagellates indicate that it ranges between 2 and 200 gigabases (Gb) (Lajeunesse et al., 2005), up to two orders of magnitude larger than the human genome (approximately 2.9 Gb). Interestingly Symbiodinium contains some of the smallest genome estimates for dinoflagellates (Lajeunesse et al., 2005); whether this reflects their smaller cell size, or a genome reduction due to their symbiotic life history, as is seen in other microbial endosymbionts (Cavalier-Smith, 2005; Keeling and Slamovits, 2004; Moran and Wernegreen, 2000; Sakhrakar et al., 2004), is unknown (Lin, 2006).

The structure and organisation of the dinoflagellate nuclear genome are also unlike other eukaryotes (for review see Diaz de la Espina et al. (2005)) as they lack histones (the proteins involved in DNA packaging and ordering), and nucleosomes (the basic method of DNA packaging in eukaryotes). Especially unusual is the fact that the genomic DNA of dinoflagellates is permanently condensed, as if ready for division. There is also debate over the number of chromosomes present in Symbiodinium. In their published description of S. microadriaticum, S. goreauii, S. kawaguiti and S. pilosum Trench and Blank (1987) reported the chromosome numbers to be 97 ± 2, 72 ± 2, 26 and 78 ± 2 respectively. However, this can be contrasted to the study of Udy et al. (1993) who found highly variable numbers of condensed DNA regions, ranging from less than 10 to over 100. This large diversity in chromosome number can also be seen in other dinoflagellates, where counts vary from 4 to 270 (Moreno Diaz de la Espina et al., 2005). Another unique feature of the dinoflagellate genome is the DNA bases used. In addition to the normal four DNA bases (adenine, cytosine, guanine and thymine), dinoflagellates are the only known eukaryote to utilise a large amount of the modified base hydroxymethyluracil, which can replace between 12 and 68% of thymidine residues (Rae, 1976).

The large genome size in dinoflagellates is thought to be due to high gene copy numbers. To this end, Symbiodinium Rubisco (Rowan et al., 1996), PCP (36 ± 12 copies/cell; Reichman et al. (2003)) and a variety of acPCP genes (Boldt et al. (2010)) has been shown to be multi-copy. Similarly other genes in dinoflagellates have also shown to have numerous copies within the genome (luciferin binding protein – 1000 copies/cell of Gonyaulax polyedra, Lee et al. (1993), PCP – 5000 copies/cell of G. polyedra Le et al. (1997), see Hou and Lin (2009) for an exhaustive list). Using regression models based upon sequenced eukaryotic and prokaryotic genomes Hou and Lin (2009) estimate that Symbiodinium contains 38,188 protein-coding genes per genome (in comparison the human genome is estimated to contain between 20,000 and 25,000 (Human Genome Sequencing Consortium, 2004)). This is supported by estimates from high throughput sequencing of the dinoflagellate Alexandrium tamarense transcriptome which produces similar results, in the order of 40,000 genes, for dinoflagellate gene numbers (Moustafa et al., 2010).

Complicating analysis of gene numbers is that a proportion of the genome contains pseudo-genes, which are either not transcribed or translated, or do not encode functional proteins. For example Rowan et al. (1996) characterised a Rubisco gene (rbcG) from a clade A Symbiodinium strain which was missing almost half of the active site residues thought to be required for activity. Similarly, a genomic survey of Amphidinium carterae found that 10 of 46 actin genes were pseudogenes (Bachvaroff and Place, 2008), these high numbers of pseudogenes may also account for some of the large genome size of dinoflagellates.

Currently there is little genomic sequence information available for Symbiodinium, or any other dinoflagellate, and our understanding of genome organisation comes from small scale studies. PCR analysis of the genomic organisation of A. carterae indicated that there are at least two general categories of gene organisation in dinoflagellates. The first are highly expressed genes which are found in tandem arrays, with a short intergenic region, averaging 283 bp between the two genes, with low intron densities. In contrast those genes with a lower expression level are found as single isolated copies and are relatively intron rich (Bachvaroff and Place, 2008). Whether this arrangement holds true for Symbiodinium is unknown.
Another feature of the dinoflagellate transcriptome is a high proportion of trans-splicing, where a short conserved non-coding spliced leader sequence is added to the 5′ end of other pre-mRNA transcripts (Zhang et al., 2007). Identical spliced leader sequences have been identified for Symbiodinium (Zhang et al., 2007, Leggat unpub. data) and may be useful in obtaining full-length transcripts as has been done in other dinoflagellates (Lapointe et al., 2008). Spliced leader sequences can serve a variety of roles, including regulating gene translation (the process by which mRNA is used as a template for protein synthesis). The mechanisms of gene regulation in dinoflagellates are still unclear, given that their permanently condensed chromosomes would not seem to allow for the usual methods of transcription seen in other eukaryotes. In fact, analysis of the few microarray studies that have been conducted on dinoflagellates would seem to indicate that there may not be large transcriptional changes seen even with large changes in conditions (Okamoto and Hastings, 2003a; Okamoto and Hastings, 2003b; Van Dolah et al., 2007), instead it has been suggested that much of the regulation may occur post-translationally (Bachvaroff and Place, 2008; Fagan et al., 1999; Okamoto et al., 2001). This suggestion that expression of much of the transcriptome does not significantly change under contrasting conditions is supported by a recent massive parallel signature sequencing study conducted on the dinoflagellate A. tamarense (Moustafa et al., 2010). When this dinoflagellate was exposed to nutrient replete, nitrogen limited, phosphorus limited and xenic culture conditions approximately 73% of the transcriptome showed no significant changes in expression. Interestingly, the treatment that produced the largest change in expression profile occurred in response to the presence of bacteria, which caused the expression of 487 genes which were not found in any other treatment (Moustafa et al., 2010). Given that the coral holobiont model (Rohwer et al., 2001) consists of a diverse prokaryote community, future research will need to determine if a similar transcriptomic response to bacteria is seen in Symbiodinium.

Epigenetic mechanisms of gene regulation, i.e. DNA methylation, that may be important in dinoflagellates, have so far received little attention. Methylation occurs when a methyl group is added to a cytosine residue in a cytosine-guanine di-nucleotide sequence (CpG) or a cytosine-any nucleotide-guanine tri-peptide (CpNgG) and functions to prevent transcription. Restriction digest analysis of Symbiodinium genomic DNA indicates that a high proportion of CpG and CpNgG motifs are methylated (ten Lohuis and Miller, 1998a). Decreased methylation patterns near or within the coding regions of two genes (PCP and acpCP), were associated with an up-regulation of the transcripts (ten Lohuis and Miller, 1998b).

1.2. Plastid genome

The chloroplast in all eukaryotic photoautotrophs is thought to have arisen from an initial endosymbiotic event in which a eukaryote ingested an algal cell (Hillier et al., 1995; Boldt, Yellowlees and Leggat unpub.), carbonic anhydrase (Bobeszko, Yellowlees and Leggat unpub.), subunits of ATP synthase (atpA, atpB) and the cytochrome b6f complex (petB, petD), two ribosomal proteins (rpl28, rpl33), two unknown open reading frames (ycf16, ycf24) and the large (23S) and small (16S) ribosomal RNA in a number of different dinoflagellate species, including Symbiodinium (Moore et al., 2003). Most of those genes, which are normally found in the plastid genome, have instead been transferred to the nuclear genome. Each of the minicircles encodes normally 1, or occasionally 2 proteins, although where two are contained within the one minicircle they are not encoded as a polycistrionic transcript (Barbrook et al., 2001). Recently an exception to this rule was reported where it was found that in the dinoflagellate H. triqueta minicircles encoding for petD, psbE and psbA also encoded for either tRNA-Met, tRNA-Trp, tRNA-Pro which were co-transcribed and then cleaved from the protein encoding sequence (Nelson et al., 2007). There is also evidence that non-traditional start codons (GTA) may be found in some of the minicircles (Barbrook and Howe, 2000) while some minicircles do not appear to contain any recognisable coding region. An exception to this pattern of chloroplast organisation was recently found in the dinoflagellate G. polyedra, where the psbA gene seems to be associated with DNA of roughly 50–150 kb, the majority of which appears to be non-coding (Wang and Morse, 2006). Whether this organisation represents a derived or ancestral state is unknown. There is also the possibility that in some species minicircles are found not in the chloroplast but instead in the nucleus (Laatsch et al., 2004), how these proteins are then transported to the chloroplast without the presence of obvious plastid targeting sequences remains unknown.

Despite the key role that protein products of these genes play in photosynthesis, as yet we have little understanding of how the expression of the minicircle genes is regulated. Getting a good handle on this question is particularly relevant today, given that the D1 protein, which is coded for by psbA, is one of the possible points of thermal damage causing coral bleaching (Warner et al., 1999). What is known about minicircle regulation is that copy numbers are between 1 and 5 minicircle copies/cell, during exponential growth phase, and increase dramatically to between 50 and 420 copies during slower growth periods (Koumandou and Howe, 2007). Other unique features of the minicircles include a common “core” region which is conserved amongst minicircles of the one species and may also be conserved within genera. Given this conservation it has been suggested that this core region and linked variable region in the psbA gene could be used as a phylogenetic marker for closely related Symbiodinium strains (Moore et al., 2003).

The fact that dinoflagellates have highly reduced plastid genomes has meant that nearly all plastid proteins are nuclear encoded, when compared to other eukaryote photoautotrophs. A number of these nuclear encoded plastid genes encode polyproteins, i.e. multiple copies of the one protein are transcribed as one mRNA, translated as one protein, imported into the chloroplast and then cleaved into their final mature states. Polyproteins, or transcripts encoding multiple copies of protein domains, have been identified for Rubioce (Rowan et al., 1996), PCP (Norris and Miller, 1994; Reichman et al., 2003), chlorophyll a-chlorophyll c2-peridinin (acpCP) binding proteins (Hillier et al. (1995); Boldt, Yellowlees and Leggat unpub.), carbonic anhydrase (Bobeszko, Yellowlees and Leggat unpub.) and a protein of unknown function (Baci) (Leggat et al., 2007).

1.3. Mitochondrial genome

As with the chloroplast, mitochondria arose through an ancient endosymbiotic engulfment of an α-proteobacteria. In all organisms
there has been a transfer of genes from the mitochondria to the nuclear genome, with mitochondrial genomes generally containing between 40 and 50 genes on a single circular genome (Burger et al., 2003). However, as with the plastid genome, this is not the case with dinoflagellates. They instead encode only 2 or 3 proteins, which have undergone rRNA fragmentation, lack canonical stop codons and have extensive RNA editing, and as yet, we have little information on the structure of the mitochondrial genome (e.g. circular or linear, number of genomes) (for review see Waller and Jackson (2009)). Given that these characteristics have been found in all dinoflagellates examined to date it is expected that the Symbiodinium mitochondrial genome would display similar characteristics.

1.4. Symbiodinium ESTs

Only two studies have examined the transcriptome of Symbiodinium (Leggat et al., 2007; Voolstra et al., 2009). Leggat et al. (2007) generated a pooled library of Symbiodinium clade C3 genes from a variety of stress and non-stress treatments using both freshly isolated and short term cultures. Of the 1456 unique ESTs generated, the function of only 44% could be bioinformatically assigned, 19% which were of unknown function, 12% were assigned to protein turnover and chaperones, and 12% to energy production and conversion. Interestingly only 10% of these contigs matched any of the 50,000 previously identified dinoflagellate ESTs available at that time. Surprisingly the most abundant gene, making up approximately 2% of the transcriptome, encoded a previously uncharacterised bacterial like protein targeted to the chloroplast, again emphasising the unique nature of the dinoflagellate genome. Similarly studies of this type have identified a number of dinoflagellate specific genes (Hackett et al., 2005; Leggat et al., 2007).

In an effort to understand evolution rates in Symbiodinium Voolstra et al. (2009) compared ESTs from Symbiodinium clade C3 (3336 unique sequences) and CassKB8 (clade A1; 1484 unique sequences). A comparison of 115 orthologs found that the highest dN/dS ratio (the ratio of non-synonymous to synonymous nucleotide changes, which is a measure of evolutionary rate) was highest in those genes that were Symbiodinium specific. While the study was limited by the small sample size, the data suggested that Symbiodinium specific genes are under greater positive selection than those genes that are more widely distributed, hinting at the possibility that their function may be linked to symbiosis (Voolstra et al., 2009). Given that clade A Symbiodinium are ancestral, and possibly more adapted to a free living lifestyle, while clade C is more derived and seems more adapted to a symbiotic lifestyle, a more comprehensive analysis with multiple clades and subclades may provide further support for this hypothesis.

Given the current relatively small size of the Symbiodinium transcriptomic data (Table 1, Fig. 1), and the evolution of high throughput sequencing technology, the characterisation of a variety of transcriptomes is the obvious next step in understanding the Symbiodinium genome.

### Table 1

<table>
<thead>
<tr>
<th>Clade</th>
<th>Number of EST</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3</td>
<td>5184</td>
<td>Freshly isolated from Acropora aspera which had been subjected to either elevated temperature, elevated ammonium, or freshly isolated alga subjected to elevated or reduced CO2</td>
</tr>
<tr>
<td>A1 (K88)</td>
<td>2653</td>
<td>Cultured at 28 °C under 12:12 light:dark cycle</td>
</tr>
<tr>
<td>A3 (PL-TS-1)</td>
<td>127</td>
<td>Cultured at 24 °C under 12:12 light:dark cycle</td>
</tr>
</tbody>
</table>

1.5. Horizontal gene transfer

An interesting feature of dinoflagellates is that they have acquired a significant number of genes through the process of horizontal gene transfer (HGT), where organisms acquire genetic material from a different species. HGT is thought to be one of the major driving forces in prokaryote evolution and until recently had not been widely reported in eukaryotes. A variety of studies has now documented cases of horizontal gene transfer from cyanobacteria (Waller et al., 2006) and other eukaryotes (Fagan et al., 1998; Fagan and Hastings, 2002; Takishita et al., 2003; Wisecaver and Hackett, 2010) into dinoflagellate nuclear genomes. Single gene studies have identified two genes which are present in Symbiodinium as a result of HGT, these are a glyceraldehyde-3-phosphate-dehydrogenase (Takishita et al., 2003), which is thought to have been transferred from euglenophytes, and the form II Rubisco (Rowan et al., 1996) which is only elsewhere found in α-proteobacteria. Larger scale analysis of ESTs identified another 48 (out of a total of 1456) genes which were possible cases of HGT in Symbiodinium as they had previously only been identified in bacteria or other dinoflagellates (Leggat et al., 2007). These genes encoded proteins that were involved in a variety of functions including carbohydrate transport, inorganic ion transport, stress response and proteases, amongst others. Studies of other dinoflagellate ESTs have also hinted at numerous HGT events. Interestingly, Nosenko and Bhattacharya (2007) proposed that ecological niches where parasitism (and presumably symbiosis), and phagotomy are common, beneficial genes may be more commonly transferred from prokaryotes to eukaryotes. Given the symbiotic nature of Symbiodinium it will be interesting to compare rates of HGT into Symbiodinium and other free-living dinoflagellates, as well as amongst Symbiodinium clades. Certainly it appears that chloramvelolates, and in particular dinoflagellates, are adept at acquiring and integrating novel genes into their genome.

1.6. Functional genomics

Functional genomics links the large scale genomic resources that are becoming available to gene expression, cell biology, physiology and eventually ecological processes. Transcriptome analyses allow us to rapidly examine the expression response of a wide variety of genes. The main methods used for transcriptome studies are quantitative PCR (qPCR), gene expression microarrays, and recently RNA-sequencing. As yet, there have been no dedicated Symbiodinium microarray studies, while studies using qPCR have only recently become available. There are two factors limiting the application of qPCR to studies of Symbiodinium, the first is the lack of available sequence information for different clades, while the second is the availability of suitable house-keeping genes (HKG) for use as references. We are starting to overcome the sequence data challenge as new sequence data are emerging. Voolstra et al. (2009) have completed the only large scale comparison of genes from different Symbiodinium strains, perhaps the most surprising result was the low sequence similarity between clade A1 and C3. Several new large-scale Symbiodinium transcriptomes based on next-generation sequencing technologies will soon become available (Leggat unpublished, Medina unpublished). The large sequence divergence between clades, and also large divergence of some genes within a clade (Boldt et al. unpub.), make it difficult to design gene primers for qPCR that are suitable for multiple clades/subclades. Another necessary requirement for qPCR is the availability of effective HKGs. These internal controls are used as a comparator when examining gene expression changes, the assumption being that the expression of HKGs does not change between the control and treatment conditions. To this end, recently two papers (Boldt et al., 2010; Rosic et al., 2010) have presented the first HKG available for Symbiodinium under particular treatments filling a critical gap in the application of this methodology (Table 2). This ability to examine gene expression patterns, and integrate this
Table 2  
_Symbiodinium_ house-keeping genes used for quantitative PCR.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Symbiodinium clade (where known)</th>
<th>Stress</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proliferating cell nuclear antigen (PCNA)</td>
<td>C3</td>
<td>Light</td>
<td>Boldt et al. (2010)</td>
</tr>
<tr>
<td>Actin</td>
<td>C3</td>
<td>Light</td>
<td>Boldt et al. (2010)</td>
</tr>
<tr>
<td>18S RNA</td>
<td>C3</td>
<td>Light</td>
<td>Boldt et al. (2010)</td>
</tr>
<tr>
<td>Cytochrome oxidase subunit 1</td>
<td>C1, C3</td>
<td>Light/temperature</td>
<td>Rosic et al. (2010)</td>
</tr>
<tr>
<td>Calmodulin</td>
<td>C1, C3</td>
<td>Light/temperature</td>
<td>Rosic et al. (2010)</td>
</tr>
<tr>
<td>Ribosomal protein S4</td>
<td>C1, C3</td>
<td>Light/temperature</td>
<td>Rosic et al. (2010)</td>
</tr>
<tr>
<td>Cyclophilin</td>
<td>C1, C3</td>
<td>Light/temperature</td>
<td>Rosic et al. (2010)</td>
</tr>
<tr>
<td>S-adenosyl-L-methionine synthetase</td>
<td>C1, C3</td>
<td>Light/temperature</td>
<td>Rosic et al. (2010)</td>
</tr>
<tr>
<td>Beta tubulin</td>
<td>C1, C3</td>
<td>Light/temperature</td>
<td>Rosic et al. (2010)</td>
</tr>
</tbody>
</table>

data with other “omic” approaches, such as proteomics and metabo-
(omics (Gordon and Leggat, 2010), will provide a window on sub-
cellular responses as never before imagined. In turn this information
will enable researchers to answer many of the fundamental questions
which are still unresolved in _Symbiodinium_ symbioses.

1.7. Future directions for _Symbiodinium_ genomics

With the advent of high throughput cost effective sequencing
there is likely to be an explosion in the EST sequence data available for
different _Symbiodinium_ strains and there is now the real possibility of
a _Symbiodinium_ genome (Voolstra, Ravasi and Bajic; http://coral.aoml.
nl/noaa.gov/pipermail/coral-list/2010-May/008559.html) using the Illu-
mina sequencing platform. The ability to examine and compare the
transcriptome response to different conditions in multiple species may
provide an important tool in understanding what drives physiological
differences at both the intra- and inter-cladal level. To date over 150 different
phyotypes have been identified yet the ecological relevance of these small sequence variations is unknown (cf. Savage et al., 2003, Correa and Baker, 2009 and Sampaio et al., 2008) and the question of differential _Symbiodinium_ performance within and between clades has not been thoroughly examined. The ability to utilise molecular tools to dissect differential transcriptome responses will provide us with a new window into how these important organisms function and link symbiont responses to those of the host under different conditions (Ainsworth et al., 2008; Baird et al., 2009).
The ability to utilise both _Symbiodinium_ genomic resources and those of
the coral host (Miller et al., 2011) will be a powerful tool. This effort will
be particularly relevant in the near future given that the sensitivity of the
coral symbiosis to stress can be significantly dependent upon the
phytype of _Symbiodinium_ that reside within the coral.

Note added in proof

Since submission of this manuscript there have been a number of developments in the area of _Symbiodinium_ and coral genomics. Medina et al. have released new expressed sequence tags for two _Symbiodinium_ strains (MFI04b and K88; http://medinalab.org/zoox/) while genome assemblies have been released for two corals, _Acropora digitifera_ (http://marinegenomics.oist.jp/acropora_digitifera) and _Acropora millepora_ (http://coralbase.org/). [SS]

References

cellular changes are indicators of pre-bloating thermal stress in the coral host.
_JEB_ 364, 63–71.
number and trans-splicing sites in the dinoflagellate _Amphidinium carterae_. _PLOS_ 
One 3 (8), e2929.


